Trying My Hand at Making a System for Procedurally Generating Stories

Last year, I got the idea of making a game where a group of friends could get together, have a game scenario generated for them, and they could start playing.  This is something called procedural generation, wherein game settings, mechanics, assets, and other components are created from an alogorthim, and a bit of randomness.  I thought I would just research this, since creating any sort of video game takes a lot of time and skill.  In this case, I was looking into a system for creating stories.

I’ve read a few things about procedurally generating stories (for instance, Tail-Spin and Minstrel) and I stumbled upon one that may be in my reach.  From a paper titled “Random Word Retrieval for Automatic Story Generation” I found out about something called ConceptNet.  This is a commonsense knowledge database for finding the relations between concepts via semantics.  So you can find one concept (like “dog”) and find corresponding concepts for it (such as “animal”).  The paper talks about the intent of making a system for using ConceptNet to find the relations between words (in a process called “Concept Correlation”) and make a story out of it.  Sadly, they haven’t yet implemented the system.  So what I’m trying to do is make something that will, uh, sort of make a story.

In the paper, they talk about how the system requires a Knowledge-Based System.  Unfortunately, this system is quite tedious and difficult to create (or so the paper says).  So I’m just trying to find the connections between words and concepts.  All that I’ve been able to do, though, is mess with the Python interface to the ConceptNet website, and maybe find some related terms.  Finding the connection between two dis-similar terms is difficult, because the concepts have many branching nodes which connect to other nodes.  Finding the right nodes which connect the two concepts would take a while, because the system would have to iterate over the nodes until they find a match.

The examples I’ve been using have been “dog” and “snow”.  So the system would have to go through each node in the “dog” concept until it found a node which connects to “snow”.  It could be any connection from “dog” -> hasA-> “nose”  -> RelatedTo-> “wet” -> PropertyOf -> “snow”.  Please note that these aren’t actual connections in ConceptNet, but something like this can be found in the database.

So I don’t know how I’m going to tackle this monster, let alone make a story out of it.

Jason Anderson

I’m a man who likes to tinker and learn about things, mainly things of a technical nature. Mostly I work on free and open source software like Linux, but I have other pursuits. Currently, I’m working towards a career in information systems auditing. While I have an education in accounting (with a BBA in accounting), I am looking into jobs that involve information systems auditing.

Leave a Reply

Your email address will not be published. Required fields are marked *